

SAN DIEGO CONVENTION CENTER, CA, USA

Size Matters - The Effects of Solder Powder Size on Solder Paste Performance

Tony Lentz FCT Assembly tlentz@fctassembly.com

Table of Contents

Introduction

Solder Powder Size and Printing

Solder Powder Size and Reactivity

Test Methodology

Data (some data removed for brevity)

Summary & Conclusions

Questions?

Introduction

Size Matters in Many Ways

Solder Powder Size Matters

Solder Powder Size and Printing

Solder Powder Size and Stencil Aperture Size (5-Ball Rule)

РС Туре	Size Range (µm)	Size Range (mil)	Minimum Aperture Size (mil)	> 0402
T3	25 - 45	1.0 - 1.8	9 📢	
T4	20 - 38	0.8 - 1.5	7.5	
T5	15 - 25	0.6 - 1.0	5 [
T6	5 - 15	0.2 - 0.6	3 4	01005

Solder Powder Size and Reactivity

Solder Powder Surface Area and Reactivity

ІРС Туре	Middle Surface Area of 1Kg (m ²)	Normalized Area	Amount of Surface Area Over T3 (%)
Т3	22.9	1.00	-
Т4	27.7	1.21	21
Т5	40.2	1.75	75
Т6	80.3	3.50	350

T6

Surface Area and Reactivity

Smaller Solder Powders are Susceptible to Issues

Solder Powder Size Effects on Solder Paste

- Shelf Life and Stencil Life
- Viscosity, Slump, and Solder Balling
- Tack Force Over Time
- Printing and Print / Pause
- Wetting, Graping, Voiding
- Stability or Reactivity

Test Methodology

Solder Pastes

IPC Type	No Clean Metal Content (% wt)	Water Soluble Metal Content (% wt)
Т3	88.5	88.5
T4	88.3	88.3
Т5	88.0	88.0
Т6	87.5	87.5

Print and Pause Testing

Reflow Testing

250 -								- To		the second s			
200-							and a			the second	M		
150-					-					Citiz	X		
100				Contraction of the						~			
100			and the second s										
50-		1 million											
0	Z1	Z2	Z3	Z4 Z5	Z6	Z7	Z8	Z9	Z10				
Original 0			100			200			300			400	
Predicted 0			96			192	Second		289			385	
								-					
TCs	м	ax Rising Slope	e	Reflow Ti	me /221C		Peak Temp		Time 2	5C-peak			
<tc2></tc2>	1.78	5	55%	73.81	92%	252.06	5	71%	4.60	47%			
<tc4></tc4>	1.82	6	53%	66.44	43%	244.84	4	-2%	4.71	61%			
<tc5></tc5>	1.69	3	39%	67.34	49%	243.20) .	18%	4.75	67%			
<tc6></tc6>	1.77	5	53%	61.92	13%	248.73	3	37%	4.57	42%			
<tc7></tc7>	1.79	5	59%	64.89	33%	241.48	3 .	35%	4.77	69%			
Delta	0.13			11.89		10.58			0.20				
	4												
	P.W.I.	inch/min	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Zone 9	Zone 10	
Original Top	0004		110	130	150	170	190	210	230	250	270	230	
Original Bottom	92%	33.0	110	130	150	170	190	210	230	250	270	230	
		24.2	112	123	151	171	192	211	230	243	271	238	
Predicted Top	E00/				-								
Predicted Top Predicted Bottom	50%	34.3	112	123	151	171	192	211	230	243	271	238	

Setting	RTS Profile
Ramp rate	1.7 – 1.8 °C/sec
Reflow Time (>220 °C)	61 – 67 sec
Peak temperature	241 to 248 °C
Profile length (25 °C to peak)	4.70 minutes

Reflow: Freshly printed boards, and boards after 24 hours Data: Wetting %, solder balling, graping, voiding

Standard Solder Paste Tests

Viscosity: T-bar spindle, spiral pump Slump (IPC J-STD-005) Solder Balling (IPC J-STD-005) Tack force over time: Fresh, 24, 48 and 72 hours

Aging / Stability Tests

Heat aging: 50 - 55 °C for 72 hours Viscosity, solder balling, tack force, print, reflow

https://www.quora.co m/ls-it-true-that-beinga-US-President-speedsup-the-aging-process

Standard Solder Paste Tests

Solder Paste Viscosity

Solder Paste Slump

	No C	lean	Water Soluble		
	Cold Slump	Hot Slump	Cold Slump	Hot Slump	
SAC T3	Pass	Pass	Pass	Pass	
SAC T4	Pass	Pass	Pass	Pass	
SAC T5	Pass	Pass	Pass	Fail	
SAC T6	Pass	Fail	Pass	Fail	

Solder Balling IPC

	No C	lean	Water S	Soluble	No Clean T3	Water Soluble T3	
	Initial	After 4 Hrs	Initial	After 4 Hrs	0	0	Acceptal
Т3	Acceptable	Acceptable	Acceptable	Acceptable			ble
Т4	Acceptable	Acceptable	Acceptable	Acceptable	()	15	Unaco
Т5	Acceptable	Ac - UnAc	Acceptable	Acceptable			eptable
Т6	Unacceptable	Unacceptable	Unacceptable	Unacceptable	No Clean T6	Water Soluble T6	

Solder Paste Printing

Solder Paste Transfer Efficiency by AR

Solder Paste Transfer Efficiency by AR

Minimum Area Ratio by Solder Powder Type

Solder Powder Size	Minimum Area Ratio No Clean	Minimum Area Ratio Water Soluble
Туре 3	0.60	0.60
Type 4	0.55	0.60
Туре 5	0.50	0.55
Туре 6	More work needed	More work needed

Solder Paste Print and Pause

Print and Pause Test

Print and Pause Test

Print and Pause Test: TE% Drop from 8 Hrs to 24 Hrs

Solder Powder Size	Drop in TE% No Clean	Drop in TE% Water Soluble
Туре 3	8	5
Type 4	10	5
Type 5	18	8
Type 6	25	6

Solder Paste Reflow

Solder Paste Wetting

WS SAC T3

		na pinana any si	
Dx C (
Ca Ca			A ART
	t an an an an		
			n in in i
n in i			
	1	Pril 10 - Carl	
		<u> </u>	

WS SAC T6

Solder Paste Solder Balling

Solder Paste	Overprint with 0 Solder Balls	Overprint with < 5 Solder Balls	Overprint with < 10 Solder Balls
No Clean T3	750%	1200%	1200%
Water Soluble T3	None	1200%	1250%
Water Soluble T4	None	500%	1200%

NC SAC T5

NC SAC T6

WS SAC T3

WS SAC T5

WS SAC T6

Solder Paste Graping

Solder Paste Voiding

Excluded Rows 80

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Leve	el	Mean	
T6	A	13.3	
Т3	Α	12.9	
T4	A	12.7	
T5	Α	12.5	
Leve	ls not co	nnected by same letter are significantl	y different.

Water Size **Oneway Analy** Soluble 70 60 50 Void area % ŧ 40ł 30 20 Ĥ 10 T3 Τ4 T5 All Pairs T6 Tukey-Kramer Powder Size 0.05

Excluded Rows 80

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Leve	1	Mean	
T6	A	41.2	
T4	В	34.3	
T5	С	20.4	
Т3	D	13.3	

Levels not connected by same letter are significantly different.

Stability of the Solder Paste

Stability: Tack Force over Time

Stability: Tack Force After Heat Aging

TECHNOLOGY'S FUTURE COMES TOGETHER

MEETINGS AND COURSES: JANUARY 26–31, 2019 CONFERENCE AND EXHIBITION: JANUARY 29–31, 2019

Stability: Viscosity Before and After Heat Aging

Stability: IPC Solder Balling After Heat Aging

	No Clean		Water Soluble	
	Initial	After 4 Hrs	Initial	After 4 Hrs
ТЗ	Acceptable	Acceptable	Acceptable	Acceptable
Т4	Acceptable	Acceptable	Acceptable	Unacceptable
Т5	Acceptable	Unacceptable	Acceptable	Unacceptable
Т6	Unacceptable	Unacceptable	Unacceptable	Unacceptable

Stability: Printing After Heat Aging - No Clean Only

TECHNOLOGY'S FUTURE COMES TOGETHER

MEETINGS AND COURSES: JANUARY 26–31, 2019 CONFERENCE AND EXHIBITION: JANUARY 29–31, 2019

Stability: Wetting After a 24 Hour Hold and Heat Aging

Stability: Solder Balling After 24 Hr and Heat Aging

Stability: Graping After a 24 Hour Hold and Heat Aging

Summary & Conclusions

Solder Powder Size Performance Summary

CATEGORY	Т3	T4	T5	T6
Slump				×
Solder Balling (IPC)				×
Printing AR Limits	0.60	0.55 - 0.60	0.50 - 0.55	??
Print and Pause				×
Wetting		\checkmark		
Solder Ball / Pullback				×
Graping				×
Voiding				WS NOK
Stability / Heat Age	\checkmark		Shorter Life	×

Solder Powder Size Certainly Affects Performance

Positive Effects of Smaller Powder Size: Print Smaller Area Ratios, Voiding (other studies)

Negative Effects of Smaller Powder Size: Slump, Solder Balling, Pause in Print, Graping, Voiding (WS), Shelf Life

Solder Pastes Are Formulated to Turn Negatives into Positives!

TECHNOLOGY'S FUTURE COMES **TOGETHER**

SAN DIEGO CONVENTION CENTER, CA, USA

Tony Lentz FCT Assembly tlentz@fctassembly.com

and the second second