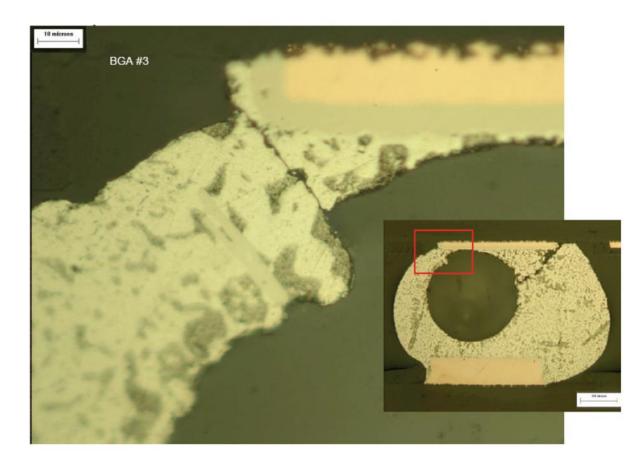


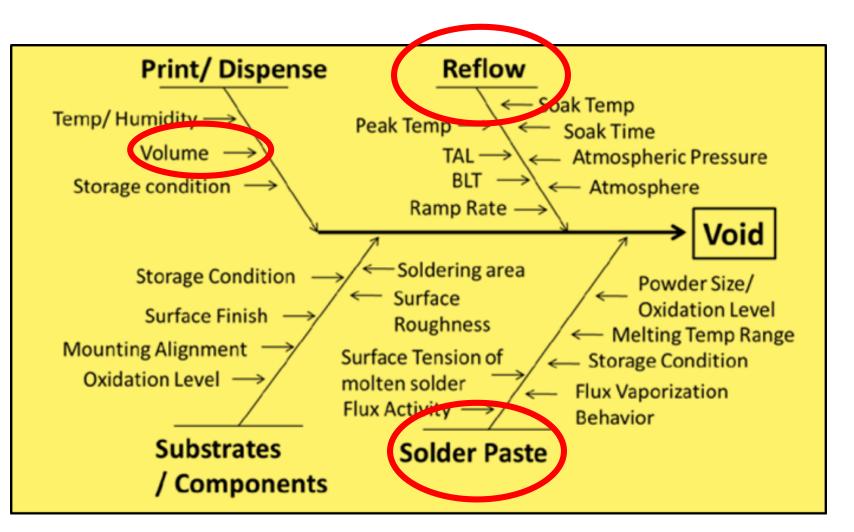
INGS & COURSES: February 1-6 CONFERENCE & EXHIBITION: February 4-6 SAN DIEGO CONVENTION CENTER | CA

FILL THE VOID V - MITIGATION **OF VOIDING FOR BOTTOM TERMINATED COMPONENTS**

Tony Lentz tlentz@fctassembly.com gsmith@blueringstencils.com BlueRing **FCT Solder**


Greg Smith

- Introduction
 - Voiding Why all the Fuss?
 - Causes of Voiding
- Methodology
- Results and Discussion
 - Voiding by Stencil Thickness
 - Voiding by Area of Coverage
 - Voiding by Component
 - Voiding by I/O Pad Toe Adder
- Conclusions and Recommendations

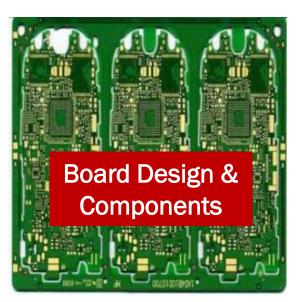




- Mechanical Failure (Cracks)
- Overheating Failure
- Electric Signal Degradation (Noise)
- Hard to Rework!

Voiding Causes

Easy to Change

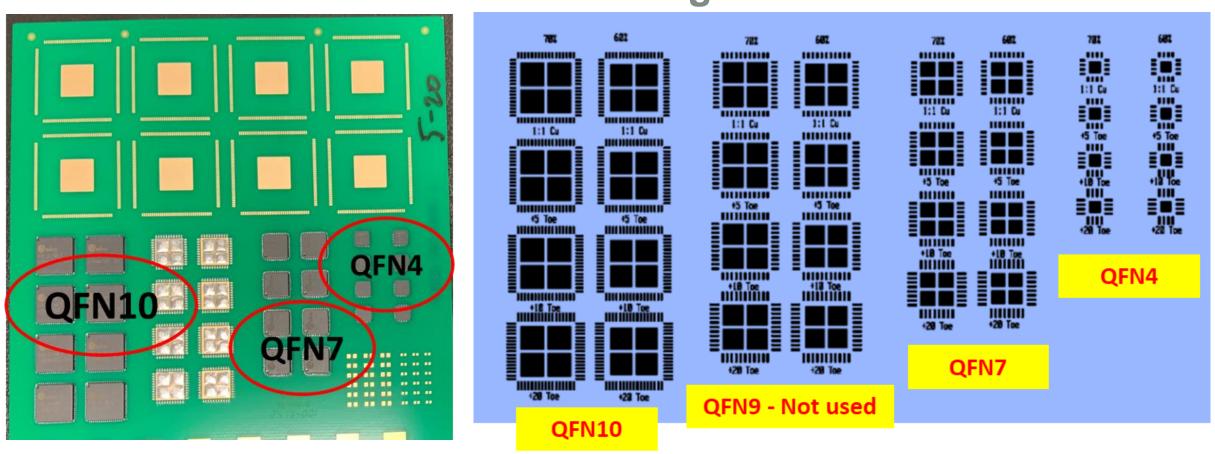

Harder to Change

ISilver

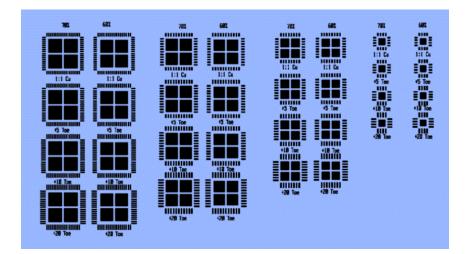
Surface Finish

OSP

Reflow Equipment (Vacuum)


ENIG

Methodology Circuit Board and Stencil Design

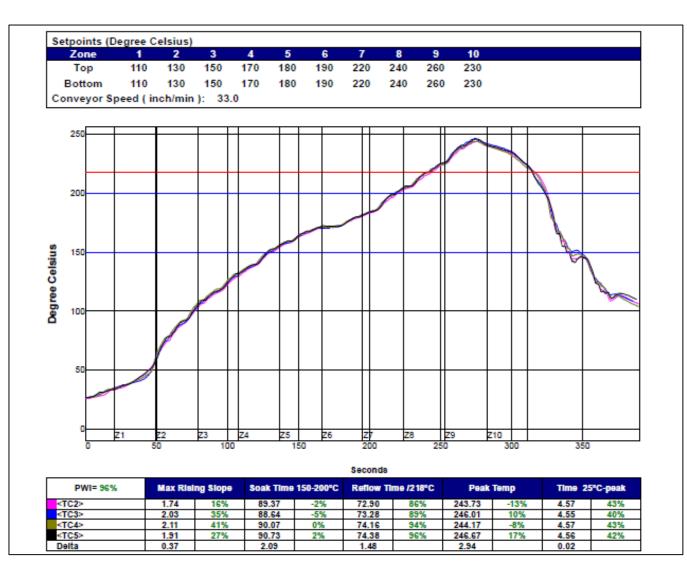

QFN 10 mm, 7 mm, 4 mm FR4, 0.062", 1 oz Cu, ENIG

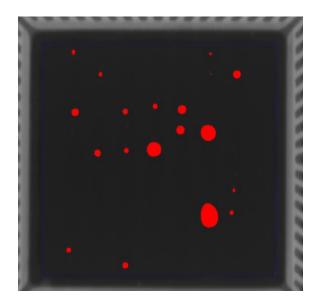
Thermal 70 & 60% Area of Coverage I/O Pad Toe Adder: 0, 5, 10, 20 mils

Methodology Stencil Design Details

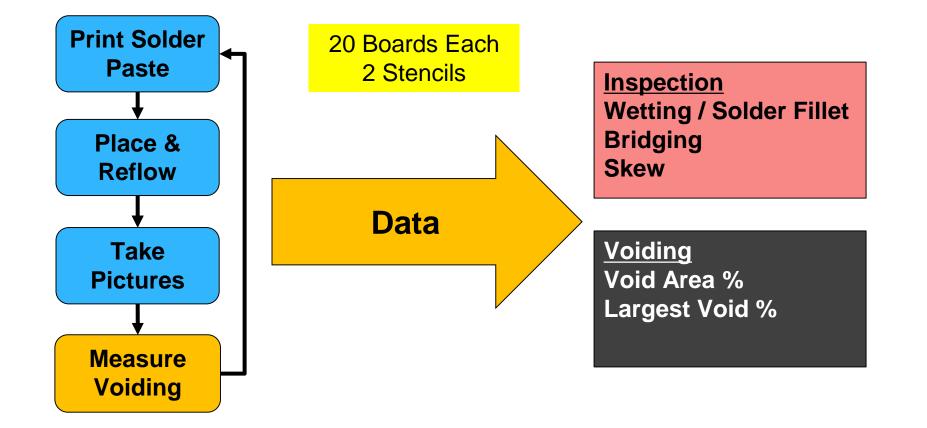
Two Stencil Thicknesses: 4 and 5 mil

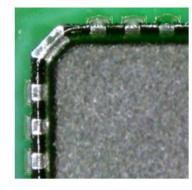
Component	Thermal Paste Area (%)	Thermal # Panes	Thermal Web Width (mils)	Thermal Brick Size (mils)	Perimeter Aperture Width (mils)	Perimeter Aperture Length 1:1 (mils)	Perimeter Aperture Length +5 (mils)		Perimeter Aperture Length +20 (mils)
QFN 10	70	4	20	133.5	9.8	30.6	35.6	40.6	50.6
QFN 10	60	4	20	124	9.8	30.6	35.6	40.6	50.6
QFN 7	70	4	20	84	12.8	30.6	35.6	40.6	50.6
QFN 7	60	4	20	78	12.8	30.6	35.6	40.6	50.6
QFN 4	70	1	0	68.9	12.8	30.6	35.6	40.6	50.6
QFN 4	60	1	0	63.1	12.8	30.6	35.6	40.6	50.6

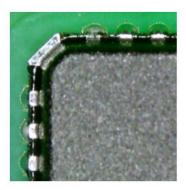

Reflow Profiles Tested

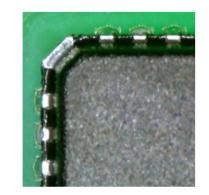

Profile Name	Max Rise Slope (°C/sec)	Soak Time (150-200°C in sec)	Reflow Time (>220°C in sec)	Peak Temp (°C)	Time (25°C- peak in min)
Linear ramp to spike	1.7-2.1	89-91	73-74	244-247	4.5-4.6
Short linear ramp	2.0-2.1	65-66	66-69	245-247	3.9
Short plus soak	2.0-2.1	92-94	52-55	242-245	4.3
Long linear ramp	1.6-1.8	87-89	94-97	249-251	5.4-5.5
Long plus soak	1.5-1.8	114-116	75-80	246-248	5.8-5.9

Reflow Profile Chosen

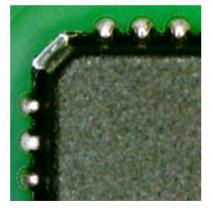

- Linear Ramp to Spike (RTS)
- Lowest Voiding with the Solder Paste Used



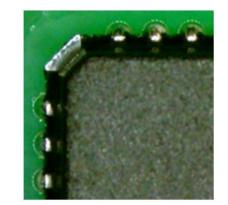

QFN 10

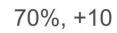

60%, +0

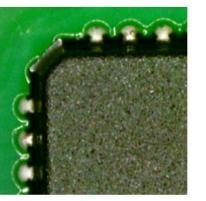
70%, +0



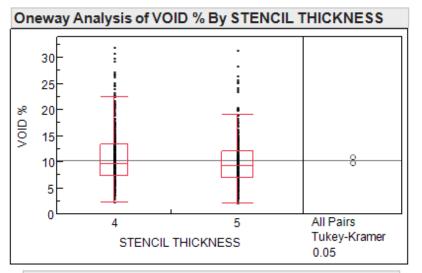
60%, +5




70%, +5


No Bridging or Skew was Observed

60%, +10



60%, +20

70%, +20

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Leve	el	Mean	
4	A	10.9	
5	в	9.8	
1.000	la nataonna	stad bu sama lattar ara aig	a ifi a a atlu

Levels not connected by same letter are significantly different.

Overall

Oneway Analysis of VOID % By STENCIL THICKNESS

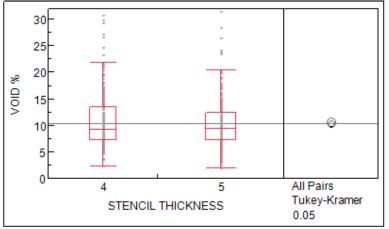
Excluded Rows 447

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

STENCIL THICKNESS

Tukey-Kramer


0.05

Connecting Letters Report

Leve	1	Mean	
4	A	11.0	
5	В	9.4	
Levels	s not conne	ected by same letter are s	ignificantly different.

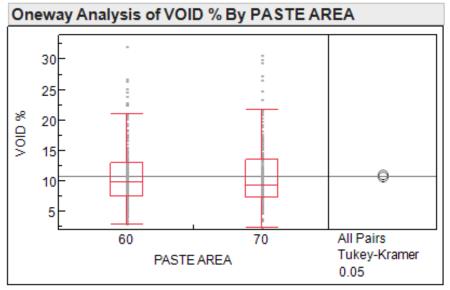
60% Paste Area

Oneway Analysis of VOID % By STENCIL THICKNESS

Excluded Rows 448

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD


Connecting Letters Report

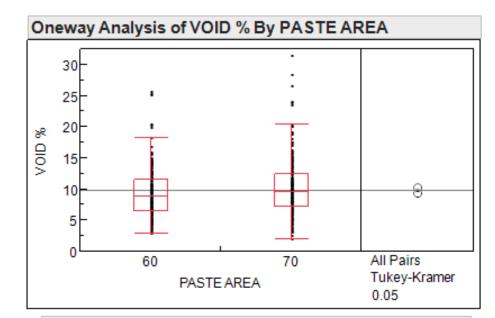
Leve	el	Mean	
4	Α	10.7	
5	Α	10.3	
Leve	Is not c	onnected by same letter are significantly diff	erent.

70% Paste Area

Voiding by Area of Coverage

Excluded Rows 479

Means Comparisons


Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

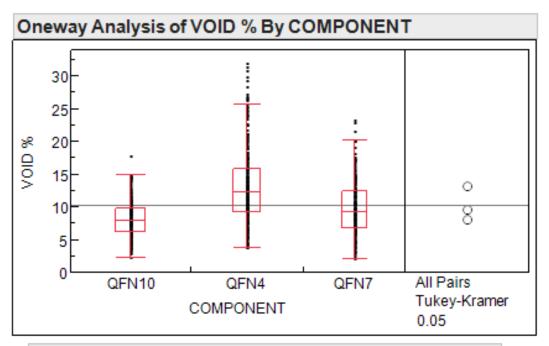
Leve	el l	Mean	
60	Α	11.0	
70	Α	10.7	
Lovel		a a sta d hu a ana a lattar ara aignifica atlu diff	

Levels not connected by same letter are significantly different.

4 mil Stencil

Means Comparisons

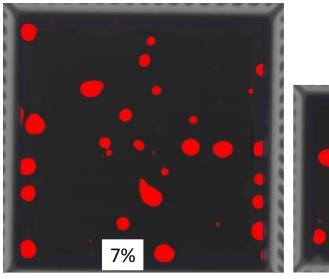
Comparisons for all pairs using Tukey-Kramer HSD

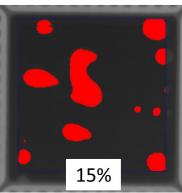

Connecting Letters Report

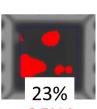
Level	1	Mean	
70	Α	10.3	
60	В	9.4	
Levels	s not conn	ected by same letter are sigr	nificantly different.

Voiding by Component

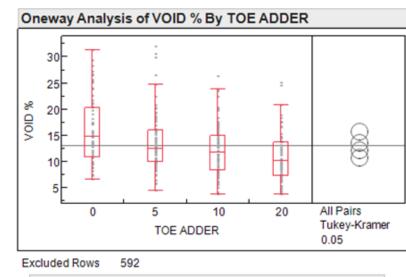
Means Comparisons


Comparisons for all pairs using Tukey-Kramer HSD


Connecting Letters Report


Level	Mean	
QFN4 A	13.2	
QFN7 B	9.7	
QFN10 C	8.1	
Levels not connect	cted by same letter are signifi	cantly different.

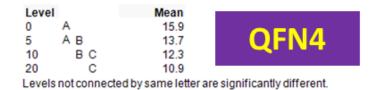
Small QFN's = Higher Voiding

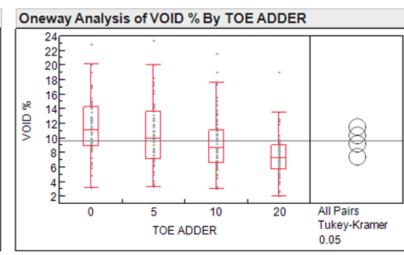


QFN10

QFN7

QFN4



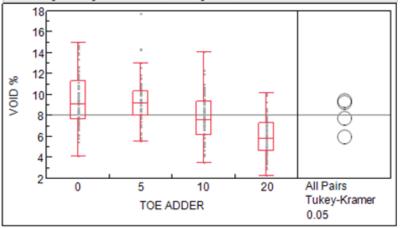


Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Excluded Rows 623


Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD Connecting Letters Report

Levels not connected by same letter are significantly different.

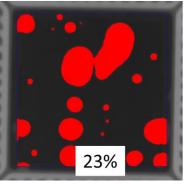
Oneway Analysis of VOID % By TOE ADDER

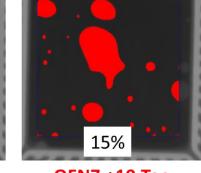
Excluded Rows 575

Means Comparisons

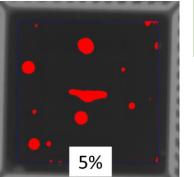
Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

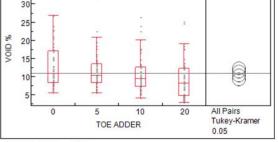

Leve	1	Mean	
0	A	9.5	05140
5	A	9.3	QFN10
10	в	7.8	<u> </u>
20	С	6.0	


Levels not connected by same letter are significantly different.

Increasing Length of Toe Adder = Lower Voiding


Voiding by Toe Adder

QFN7 +5 Toe

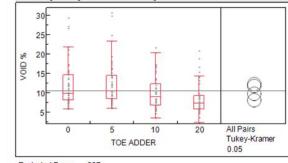

QFN7 +10 Toe

QFN7 +20 Toe

Toe Adder Affects Voiding Regardless of Paste Area or Stencil Thickness

4 mil Oneway Analysis of VOID % By TOE ADDER

Excluded Rows 687


Means Comparisons

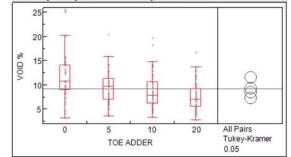
Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Leve		Mean	
0	A	12.5	
5	AB	11.6	
10	AB	10.6	
20	В	9.4	

Oneway Analysis of VOID % By TOE ADDER

Excluded Rows 687


Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

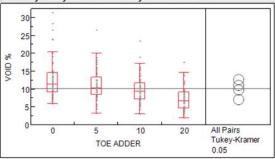
Leve		Mean	
5	A	12.5	
0	A	12.0	
10	AB	10.1	
20	В	8.4	

Oneway Analysis of VOID % By TOE ADDER

5 mil

Excluded Rows 239

Means Comparisons


Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Leve	el	Mean
0	A	11.8
5	В	9.5
10	BC	8.7
20	C	7.5

Levels not connected by same letter are significantly different.

Oneway Analysis of VOID % By TOE ADDER

Excluded Rows 240

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report


Level		Mean	
0	A	12.9	
5	AB	11.2	
10	в	9.9	
20	C	7.2	
Leve	Is not connected	by same letter are significantly diffe	rent.

70%

60%

Oneway Analysis of VOID % By CODE

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Level		Mean
QFN4.5.70.0	A	18.7
QFN4.4.70.0	AB	16.6
QFN4.4.60.0	ABC	15.9
QFN4.4.70.5	ABCD	14.8
QFN4.4.60.5	ABCDE	14.6
QFN4.5.70.5	ABCDEF	14.1
QFN4.5.60.0	ABCDEFG	13.9
QFN7.4.60.0	ABCDEFGHI	13.5
QFN4.4.60.10	BCDEFGH	13.4
QFN7.4.70.5	BCDEFGHIJ	13.2
QFN4.4.60.20	BCDEFGHI	12.9
QFN4.4.70.10	BCDEFGHIJK	12.3
QFN4.5.70.10	BCDEFGHIJK	12.2
QFN7.4.60.5	BCDEFGHIJKL	11.8
QFN4.5.60.5	CDEFGHIJKL	11.5
QFN7.4.70.0	BCDEFGHIJKLMN	11.4
QFN4.5.60.10	CDEFGHIJKL	11.4
QFN4.4.70.20	CDEFGHIJKL	11.4
QFN7.4.60.10	BCDEFGHIJKLMN	11.3
QFN7.4.70.10	BCDEFGHIJKLMN	11.3
QFN7.5.60.0	CDEFGHIJKLM	11.3
QFN7.5.70.0	DEFGHIJKLMN	10.8
QFN10.5.70.0	DEFGHIJKLMN	10.0
QFN10.5.60.0	DEFGHIJKLMNO	
	DEFGHIJKLMNO	
QFN7.5.70.5 QFN4.5.70.20	DEFGHIJKLMNO	
	DEFGHIJKLMNO	9.9
QFN10.4.70.5 QFN7.4.60.20	DEFGHIJKLMNO	9.9
QFN4.5.60.20	EFGHIJKLMNO	9.8
	FGHIJKLMNO	
QFN10.5.60.5	FGHIJKLMNO	
QFN10.5.70.5		
QFN10.5.70.10		
QFN10.4.60.0	HIJKLMNO HIJKLMNO	8.8 8.7
QFN10.4.60.5		
QFN7.5.70.10	HIJKLMNO IJKLMNO	
QFN10.4.70.0		
QFN7.4.70.20	IJKLMNO	
QFN7.5.60.5	JKLMNO	7.7
QFN10.5.60.10		
QFN10.4.60.10		
QFN10.4.70.10		
QFN7.5.60.10		
QFN7.5.60.20	LMNO	
QFN7.5.70.20	MNO	
QFN10.5.60.20		
QFN10.4.70.20		
QFN10.4.60.20		
QFN10.5.70.20		5.5
Levels not conn	ected by same letter are significantly di	fferent.

High Voiding Small QFN 4 mil Stencil +0 to 5 Toe

Low Voiding Large QFN 5 mil Stencil +10 to 20 Toe

- The linear ramp to spike (RTS) profile produced the lowest voiding with the solder paste used.
- Increasing the stencil foil thickness from 4 mils to 5 mils reduced voiding significantly.
- Increasing area of coverage from 60 to 70% did not have a significant effect.
- Overall voiding decreases as QFN component body size is increased.
- Overprinting the I/O lead toes reduces void area, regardless of the other factors.

Recommendations to Mitigate Voiding

- ✓ Use a low voiding solder paste with the appropriate reflow profile.
- ✓ Increase stencil thickness or area of coverage on thermal pads.
- \checkmark Overprint to the toe of the QFN I/O pads.

Tony Lentz tlentz@fctassembly.com

Greg Smith gsmith@blueringstencils.com

