

Fill the Void

Tony Lentz tlentz@fctassembly.com

Greg Smith gsmith@fctassembly.com

Outline/Agenda

- Introduction
- Factors that Influence Voiding
- Voiding Results
- What Have We Learned About Voiding?
- Future Work
- Acknowledgements
- **Q** & A

Do you have voids in your life?

Good news! We have solutions!

Void: (noun)

A completely empty space. "The black void of space."
 Gap in the solder joint where the solder does not fill the space completely.

*Image from Nihon Superior, "Controlling the Voiding Mechanisms in the Reflow Soldering Process", Proceedings of IPC APEX Expo 2016.

Figure 7-43 Typical Size and Location of Various Types of Voids in a BGA Solder Joint

*IPC 7095C, "Design and Assembly Process Implementation for BGAs", 2013-January.

Void Limits

3.5.7 Voids in BGA Many companies use X-ray, In-circuit Test (ICT) and Automatic Optical Inspection (AOI) in combination to improve their process control for BGA solder joints. Some look for voids through X-ray to determine accept/reject criteria. Some level of voiding in any kind of solder joint is inevitable, but there is still debate as to what is acceptable or an excessive void. The proponents of voids argue that it is not the void that is bad, but its location. The review of voiding has many considerations, and in order to assist in process improvement

*IPC 7095C, "Design and Assembly Process Implementation for BGAs", 2013-January.

Void Limits

Table A-3 Corrective Action Indicator for Microvia in Pad Lands used with 0.5, 0.4 or 0.3 mm Pitch

Void		Corrective Action Indicator			
Туре	Void Description	Class 1	Class 2	Class 3	Action Taken
Determined by cross section/X-ray laminography (sampling according to Section 7.6.3) at Component Incoming Evaluation					
A	Voids within the solder ball (prior to assembly)	Up to 90% balls may have voids Maximum Void size in any ball is 9% of Area (30% of the image diameter)			Investigate root cause in process & take corrective action
В	Voids at package interface (prior to assembly)	Up to 80% balls may have voids Maximum Void size in any ball is 6% of area (25% of the image diameter) All balls with cumulativ	Up to 70% balls may have voids Maximum Void size in any ball is 4% of area (20% of the image diameter) re voids no matter what a	Up to 50% balls may have voids Maximum Void size in any ball is 2% of area (15% of the image diameter) size are considered	Investigate root cause in process & take corrective action
Determined by cross section/X-ray laminography (semaling according to Section 7.0.9, Colustion after Assembly					
С	Voids within the fall after PCA reflo	Up to 100% balls may have voids Maximum Void size in any ball is 25% of Area (50% of the image diameter)			Investigate root cause in process & incoming parts, take corrective action
D	Voids at the package interface after PCA reflow	Up to 100% Dans may have voids Maximum Void size in any ball is 15% of area (40% of the image diameter)	Ave voids Maximum Void size in any ball is 10% of area (32% of the image diameter)	Up to 60% balls may have voids Maximum Void size in any ball is 5% of area (22% of the image diameter)	Investigate root cause in process & incoming parts, take corrective action
All balls with cumulative voids no matter what size are considered					
E	Voids at the mounting surface interface after PCA reflow	Up to 100% balls may have voids Maximum Void size in any ball is 15% of area (40% of the image diameter)	Up to 80% balls may have voids Maximum Void size in any ball is 10% of area (32% of the image diameter)	Up to 60% balls may have voids Maximum Void size in any ball is 5% of area (22% of the image diameter)	Investigate root cause in process & incoming parts, take corrective action
		Balls with cumulative v image diameter) are no	oids smaller than 2% of the area (15% of the t counted		
Determined by transmission X-ray (sampling according to Section 7.6.3) for Process Evaluation either at Component Incoming or after Assembly					
A, B	Voids at incoming	Not Recommended			Investigate root cause in process & take corrective action
C, D, E	Voids after PCA reflow	Not Recommended			Investigate root cause in process & incoming parts, take corrective action

*IPC 7095C, "Design and Assembly Process Implementation for BGAs", 2013-January.

Factors that Influence Voiding

*Diagram from Nihon Superior, "Controlling the Voiding Mechanisms in the Reflow Soldering Process", Proceedings of IPC APEX Expo 2016.

PRINT / DISPENSE

Stencil Design was Varied on QFN Thermal Pads:

PRINT / DISPENSE

Printed paste on QFN Thermal Pads (65% Area Covered):

ENIG Surface Finish

REFLOW - Reflow Profile was Varied:

SOLDER PASTE

Two lead-free water soluble solder pastes were used:

Paste A = 88.0% SAC305 Type 3. Moderate Activity.
Paste B = 88.5% SAC305 Type 3. High Activity.

Equipment

Printer: 30 mm/sec, 1.0 lb/in, 1.5 mm/sec separation

Pick and Place

Equipment

Reflow Oven: simulates 10 zone, reflow in air

X-Ray: voltage 70 kV, current 400 µA

Box and Whisker Plot

Voiding Results – Solder Paste

SOLDER

PASTE B

SOLDER PASTE A

Tukey-Kramer HSD Testing

Voiding Results – Solder Paste

Voiding Results – Stencil Design

Voiding Results – Stencil Design

Voiding Results – Reflow Profile

Voiding Results – Reflow Profile

Voiding Results – Stencil Design by Solder Paste

PASTE B

PASTE A

Voiding Results – Stencil Design by Solder Paste

SOLDER PASTE B

Voiding Results – Reflow Profile by Solder Paste

Voiding Results – Reflow Profile by Solder Paste

SOLDER

PASTE A

SOLDER PASTE B

Void Size

Voiding Results – Largest Void

1000

Voiding Results – Largest Void by Solder Paste

Voiding Results – Largest Void by Stencil Design

Voiding Results – Largest Void by Reflow Profile

Previews of Coming Attractions

Voiding with vapor phase reflow and vacuum

Using vapor phase with vacuum to rework voids

Vapor Phase Reflow

No vacuum
Main Vac – during liquidus
Prevac 1 – before heating
Prevac 2 – during heating before liquidus

Voiding Results – Vapor Phase

Solder Paste B SAC305 T3 Linear ramp profile in vapor phase

Voiding Results – Vapor Phase

Voiding Results – Vapor Phase as a Rework Method

Solder Paste B SAC305 T3 1st convection reflow – 2nd vapor phase with vacuum

Voiding Results – Vapor Phase as a Rework Method

What Have We Learned About Voiding?

Solder paste B generated higher voiding and larger voids than solder paste A

The 5-Dot stencil pattern generated higher voiding and larger voids than the other designs.

The RTS profile generated higher voiding with solder paste A, while the RTS-HT profile generated higher voiding with solder paste B

 As total void area increases, the largest void size increases.

How to Fill the Void

Use a solder paste that generates low voiding in your process.

Optimize the stencil design to minimize voiding.

 Optimize the reflow profile for your solder paste to minimize voiding.

Future Work

Voiding mitigation work is ongoing and results will be presented in future papers. Some of the variables being studied are as follows:

- Vapor phase reflow with vacuum
- Convection reflow using nitrogen
- No clean vs. water soluble solder pastes
- Particle size of the solder powder used (T3, T4, T5)
- Manufacturer of the solder powder
- Additional stencil designs are being tested

Acknowledgements

Many thanks to McKennah Repasky, a summer intern with FCT Assembly, for all of her hard work running the testing for this paper.

We appreciate the support and help of A-Tek Systems for running the Vapor phase experiments.

Tony Lentz tlentz@fctassembly.com 970-346-8002