

Fill the Void II: An Investigation into Methods of Reducing Voiding

Tony Lentz FCT Assembly tlentz@fctassembly.com Patty Chonis & JB Byers A-Tek Systems Patty@atekllc.com jb_byers@atekllc.com

This paper and presentation were first presented at the 2017 IPC Apex Expo Technical Conference and published in the 2017 Technical Conference Proceedings.

Outline

- Introduction on Voiding
- Voiding Factors
- Methodology
- Voiding Results
- Recommendations to "Fill the Void"
- Future Work
- Acknowledgements
- Questions?

Introduction on Voiding

BGA Solder Joint after Reflow Soldering

Figure 7-43 Typical Size and Location of Various Types of Voids in a BGA Solder Joint

Introduction on Voiding

*IPC 7095C, "Design and Assembly Process Implementation for BGAs" 2013-January.

Factors That Influence Voiding

*Reference: K.Sweatman et al., "Controlling the Voiding Mechanisms in the Reflow Soldering Process", Proceedings of IPC APEX Expo 2016.

Factors Studied

- Solder Paste: water soluble, no clean, solder powder size and manufacturer
- Stencil Design: cross hatch, 5-dot, diagonal stripe
- Surface Finish: ENIG and OSP
- Convection Reflow Profiles: RSS, RTS, air and nitrogen
- Vapor Phase Reflow: with and without vacuum
- Rework Voids using Vapor Phase with Vacuum

Methodology

Methodology - Materials

QFN 68 lead 10 mm body 0.5 mm pitch Tin finish

Methodology – Stencil Design

Methodology – Solder Pastes

Solder Paste Flux Code	Flux Type	IPC Solder Powder Size	Metal Content (% wt)
А	Water soluble – moderate activity	Туре 3	88.0
В	Water soluble – high activity	Type 3	88.5
В	Water soluble – high activity	Type 4	88.3
В	Water soluble – high activity	Type 5	88.1
С	No clean	Type 3	88.5
D	No clean – pin testable	Type 3	88.4
E	Water soluble – moderate/low activity	Type 3	89.0

All were made with SAC305 (Sn – Ag 3.0% - Cu 0.5%) alloy.

Methodology – Reflow Profile

Methodology – Reflow Profile

PWI for this profile=

56%

TURN ELECTRONICS MANUFACTURING **INSPIRATION INTO INNOVATION**

Methodology – Reflow Profile

Methodology – Reflow Profile

Setting	RTS Profile	RTS-HT Profile	RSS Profile
Ramp rate	0.98 – 1.02 °C/sec	1.09 – 1.10 °C/sec	1.06 – 1.08 °C/sec
Soak time (150-180 °C)	No added soak	No added soak	Soak added
	$33 - 34 \sec(2)$	28 – 29 sec	$78 - 80 \sec$
Reflow Time (>221 °C)	53 – 59 sec	68 – 75 sec	61 – 65 sec
Peak temperature	245 to 249 °C	255 to 259 °C	244 to 245 °C
Profile length (25 °C to peak)	4.70 minutes	4.60 minutes	5.50 minutes

Methodology – Vapor Phase

Current Production VP System

Methodology – Vapor Phase Vacuum

Vapor Phase Tests	Vacuum Cycle	Vacuum Description
VP	Vapor phase reflow - no vacuum	None
VP-V1	Main vacuum only	- 750 mbar for two 5 sec steps
VP-V2	Prevac 1 plus main vacuum	Prevac 1 on raw paste before heating
VP-V3	Prevacs 1 & 2 plus main vacuum	Prevac 2 during ramp up
	1010 500 0,5	

Methodology – Vapor Phase

Methodology - Statistics

× area.

τ

Voiding Results

Voiding Results – Solder Paste

SAC 305 T3 - RTS Profile

Voiding Results – No Clean Paste

SAC 305 T3 - RTS Profile

Voiding Results – Powder Size

Voiding Results – Powder Mfg

Voiding Results – Stencil Design

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Level		Mean
U11	A	28.481667
U12	в	21.196667
U09	в	21.186667
U10	в	19.270000

Levels not connected by same letter are significantly different.

Voiding Results – Surface Finish

Solder Paste B SAC T3 – RTS Profile

Voiding Results – Reflow Profile

Solder Paste B SAC T3

Voiding Results – Vapor Phase

Voiding Results – Vapor Phase

Voiding Results – VP Rework

Solder Paste B SAC T3

Fill the Void

Recommendations to "Fill the Void"

- ✓ Use a solder paste that is low voiding in your process
- ✓ Use Type 4 or 5 solder powder in your paste
- Design the stencil to give gas escape routes
- ✓ Tune the reflow profile for your solder paste
- ✓ Reflow with vapor phase or nitrogen (oxygen free)
- ✓ Use a reflow system with vacuum

Future Work on Voiding

- Additional components like: LGA, LED, BGA
- More stencil designs
- Further work on solder powder size & oxide levels
- Surface finish impact
- Further work on nitrogen in convection reflow
- Voiding over the stencil life of the solder paste

TECHNOLOGY'S

URNING

TURN ELECTRONICS MANUFACTURING INSPIRATION INTO INNOVATION

Acknowledgements

We would like to thank our colleagues at A-Tek Systems for their support and help running the vapor phase reflow testing.

