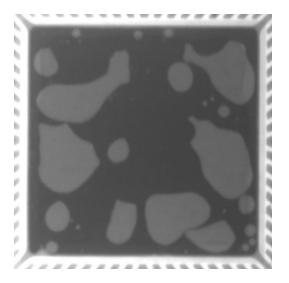


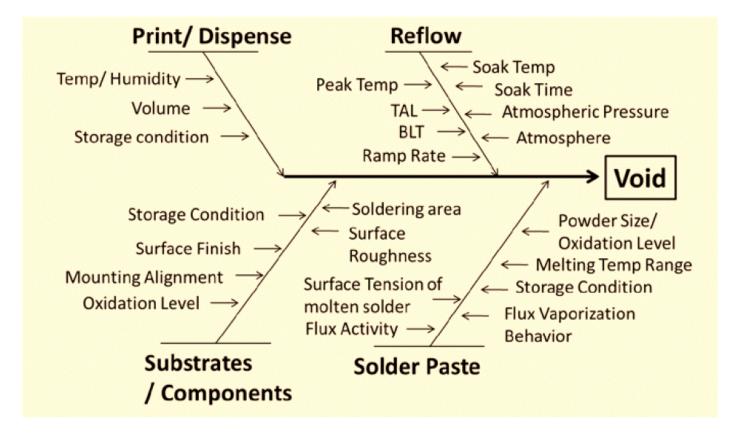
Fill the Void III


Tony Lentz tlentz@fctassembly.com

Outline/Agenda

- Introduction
- Factors that Influence Voiding
- Experimental Methodology
- Voiding Results
- Conclusions
- Future Work
- Acknowledgements
- Q & A

Introduction



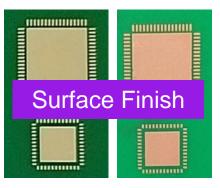
Voids in QFN Thermal Pad Solder Joints

- Limit heat transfer
- Lower mechanical strength
- Can lead to long term reliability issues

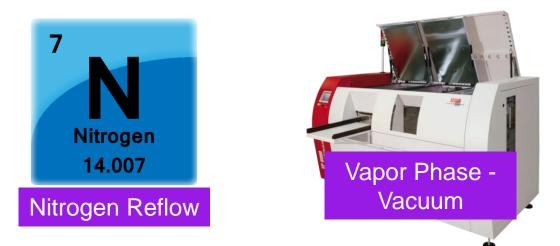
Factors that Influence Voiding

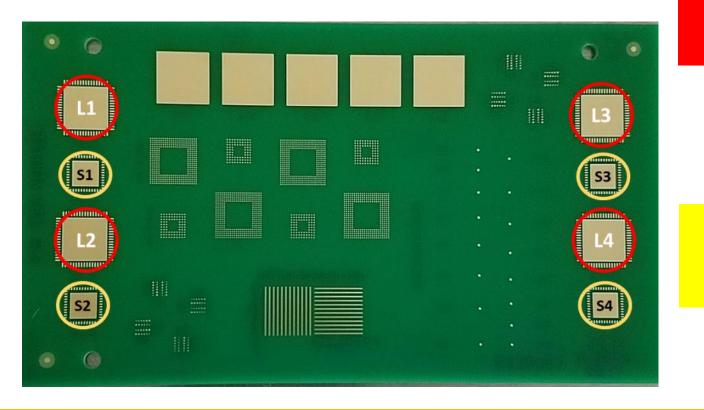
*Diagram from Nihon Superior, "Controlling the Voiding Mechanisms in the Reflow Soldering Process", Proceedings of IPC APEX Expo 2016.

Voiding Factors That Were Studied Previously



Solder Paste




Voiding Factors in This Presentation

- Solder Powder Size (T3, T4, T5 SAC305)
- Solder Paste
 - □ B = Water Soluble Lead-Free
 - □ C = No Clean Lead-Free
 - □ E = Water Soluble Lead-Free
 - □ F = New "Low Voiding" No Clean Lead-Free
- Solder Alloy
 - □ SAC305 (Sn/3.0Ag/0.5Cu)
 - □ SN100C (Sn/0.7Cu/0.05Ni/0.005Ge)
 - □ SN100CV (Sn/0.7Cu/0.05Ni + Bi)
 - □ AT Mix: 90% SAC305 + 10% SN100C (Sn/2.7 Ag/0.52 Cu/0.006 Ni)
- Surface Finish (ENIG and OSP)
- Stencil Design (50 to 80% Area Coverage)

PR Test Board has Two Sizes of QFNs

- QFN 10 = 10 mm body, 68 lead, 8.3 mm thermal pad
- QFN 7 = 7 mm body, 48 lead, 4.9 mm thermal pad

10 mm body Tin finish

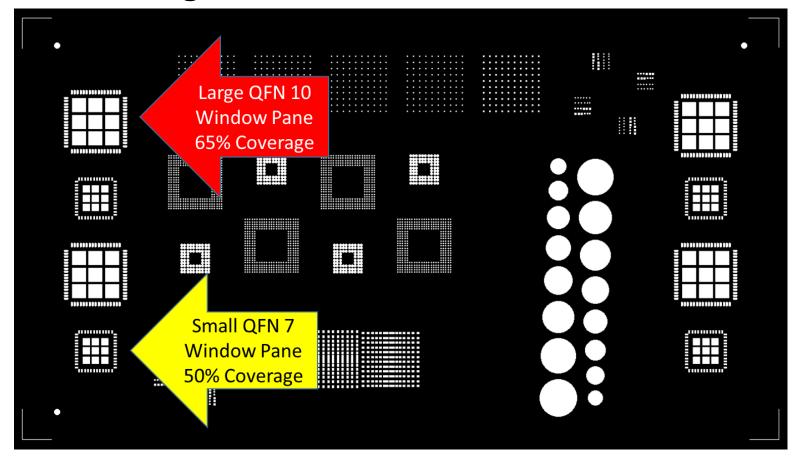
QFN 10

QFN 7 7 mm body Tin finish

Most tests: 80 void measurements = 20 boards x 4 components ea.

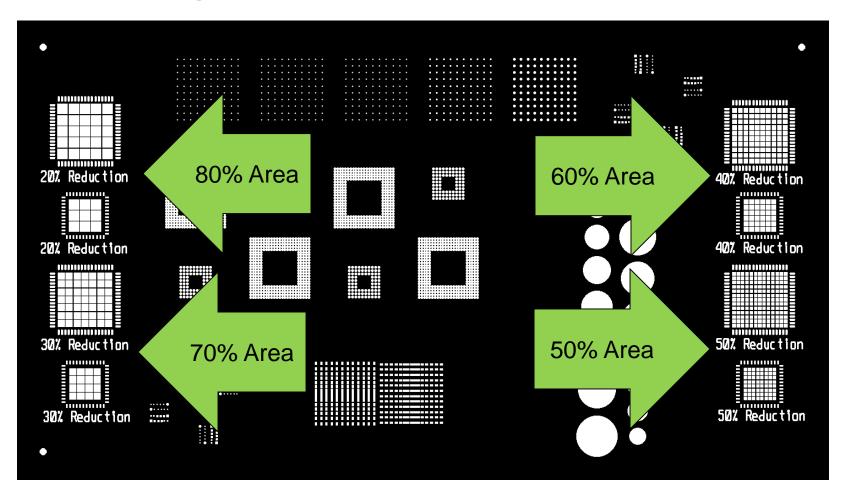
Solder Pastes

Solder Paste	Attributes	J-STD-004 Class
В	Water Soluble Lead Free. Relatively High Voiding	ORH1
E	Water Soluble Lead Free. Relatively Low Voiding	ORH1
С	No Clean Lead Free. Typically Low Voiding	ROL0
F	No Clean Lead Free. "Ultra-Low" Voiding	ROL0

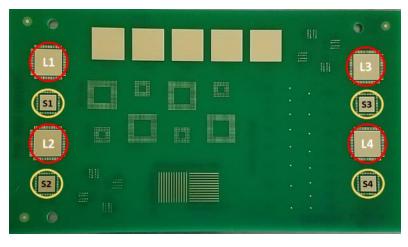


Solder Alloys Used

Alloy	Composition (% wt)	Melting Range (°C)
SN100C	Sn / 0.7 Cu / 0.06 Ni / 0.005 Ge	227 (eutectic)
SAC305	Sn / 3.0 Ag / 0.5 Cu	217 - 220
SN100CV	Sn / 1.5 Bi / 0.7 Cu / 0.06 Ni	221 - 225
(AT) SAC305 90% SN100C 10%	Sn / 2.7 Ag / 0.52 Cu / 0.006 Ni	217 - 227



Stencil Design #1 – Standard for the PR Board



Used for all tests unless otherwise noted

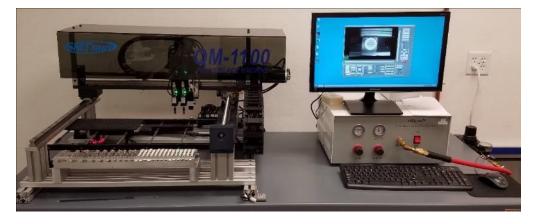
Stencil Design #2 – Custom for this Experiment

Stencil Design #2 Custom Test

Location	Number of Windows	Window Size in mm (mils)	Web Spacing in mm (mils)	Paste Coverage
	vv muows			Area (%)
L1	25	1.47 (58)	0.20 (8)	80
L2	49	1.00 (39)	0.20 (8)	70
L3	100	0.64 (25)	0.20 (8)	60
L4	169	0.44 (17.5)	0.20 (8)	50
S1	9	1.47 (58)	0.20 (8)	80
S2	16	1.02 (40)	0.20 (8)	70
S3	36	0.64 (25)	0.20 (8)	60
S4	64	0.43 (17)	0.20 (8)	50

Reflow Profiles

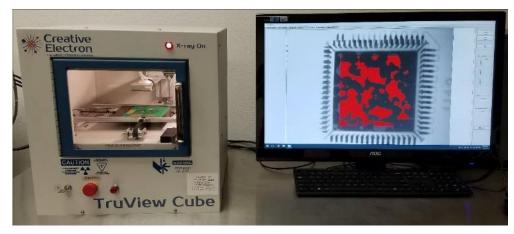
	Setting	SAC305 Profile	SN100C Profile
	Ramp rate	1.7 – 1.8 °C/sec	1.5 – 2.0 °C/sec
	TAL (Reflow time)	61 – 67 sec > 220°C	60 – 67 sec > 227°C
•	Peak temperature	241 to 248 °C	245 to 256 °C
	Profile length (25 °C to peak)	4.7 minutes	4.5 minutes
	Alloys used	SAC305 and AT Mix	SN100C and SN100CV


Equipment

Pick and Place

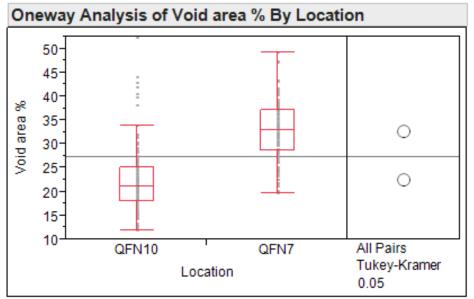
Printer parameters

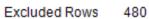
30 mm/sec print speed 0.18 kg/cm (1.0 lb/in) blade pressure 3.0 mm/sec separation



Equipment

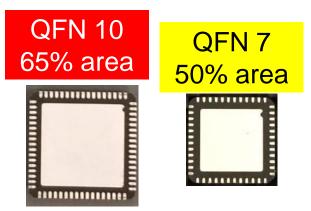
Reflow Oven: 10 zone, reflow in air


X-Ray: voltage 70 kV, current 400 µA



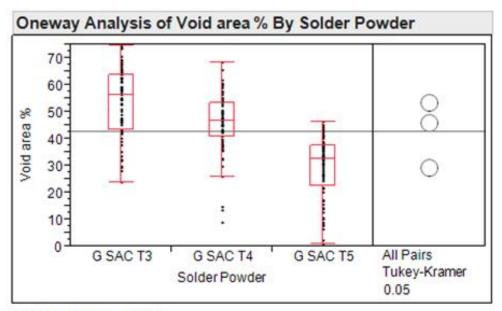
Voiding Results

Voiding Results – Component Size



Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

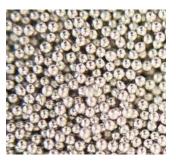

Connecting Letters Report

Level	Mean		
QFN7 A	32.674167		
QFN10 B	22.431667		
Levels not connected by same letter are significantly different.			

NC Solder Paste C SAC305 Profile

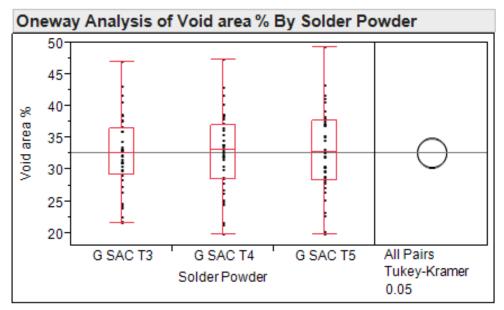
Voiding Results – Solder Powder Size

Excluded Rows 1616


Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report


Level		Mean	
G SAC T3 A		53.348750	
G SAC T4	В	46.000000	
G SAC T5	С	29.266250	
		the second second second second second	-

Levels not connected by same letter are significantly different.

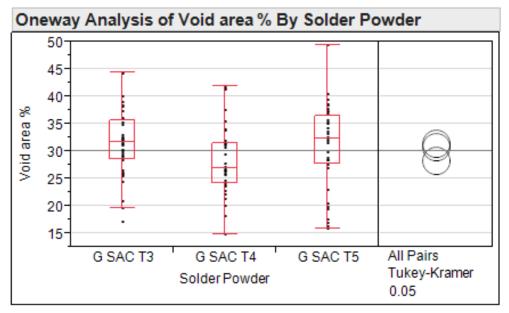
WS Solder Paste B SAC305 Profile QFN 10

Voiding Results – Solder Powder Size

Excluded Rows 600

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD


Connecting Letters Report

Level	Mean
G SAC T4 A	32.772500
G SAC T5 A	32.745000
G SAC T3 A	32.505000

Levels not connected by same letter are significantly different.

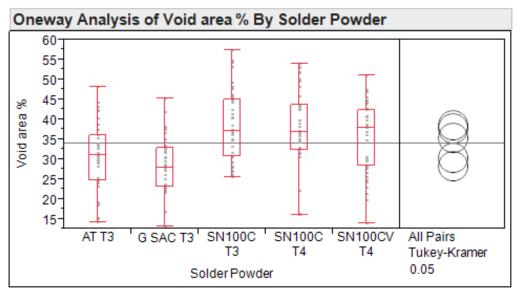
NC Solder Paste C SAC305 Profile QFN 7

Voiding Results – Solder Powder Size

Excluded Rows 480

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD


Connecting Letters Report

Level	Mean
G SAC T3 A	31.560000
G SAC T5 A	30.732500
G SAC T4 A	28.230000

Levels not connected by same letter are significantly different.

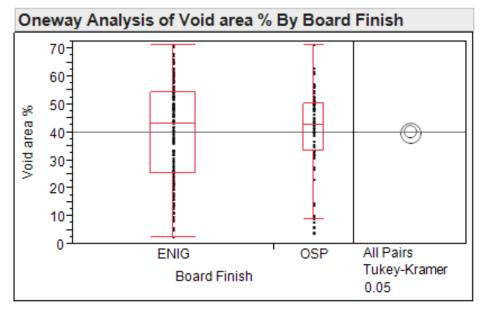
NC Solder Paste F SAC305 Profile QFN 7

Voiding Results – Solder Alloy

Excluded Rows 520

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD


Level		Mean
SN100C T3 /	A	38.512500
SN100C T4 /	۹	37.955000
SN100CV T4 /	٩в	35.382500
AT T3	BC	30.500000
G SAC T3	С	28.440000

Levels not connected by same letter are significantly different.

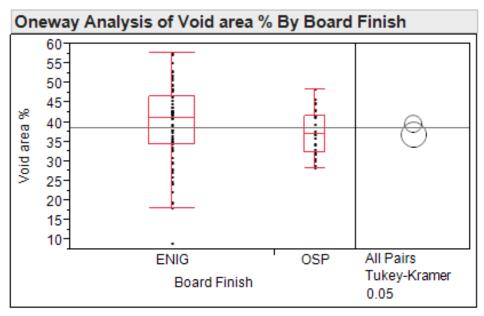
WS Solder Paste B Appropriate profile QFN 7

Voiding Results – Surface Finish

Excluded Rows 1576

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD


Connecting Letters Report

Level		Mean
ENIG	А	40.151500
OSP	А	40.056250

Levels not connected by same letter are significantly different.

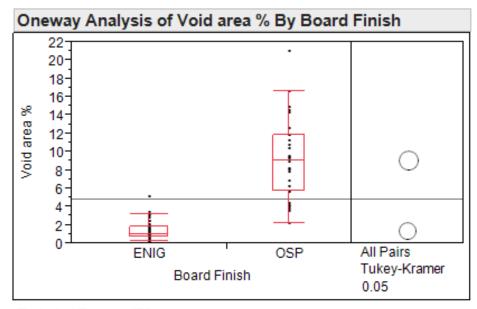
WS Solder Paste B SAC305 Profile QFN 10

Voiding Results – Surface Finish

Excluded Rows 1744

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD


Connecting Letters Report

Level		Mean
ENIG	А	39.597500
OSP	А	36.943750

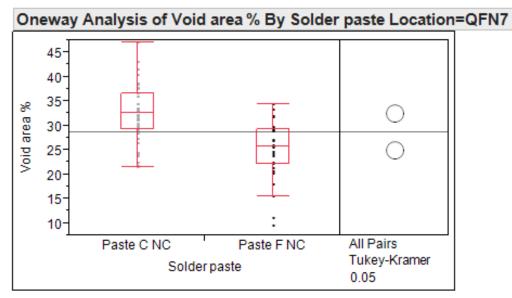
Levels not connected by same letter are significantly different.

WS Solder Paste E SAC305 Profile QFN 10

Voiding Results – Surface Finish

Excluded Rows 1784

Means Comparisons


Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Level		Mean	
OSP	Α	9.2031250	
ENIG	в	1.3575000	
Levels	not conn	ected by same lette	r are significantly different.

NC Solder Paste C SAC305 Profile QFN 10

Voiding Results – Solder Paste

Excluded Rows 240

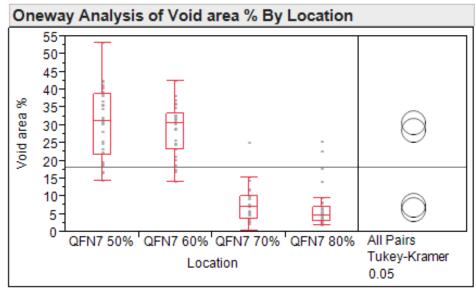
Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

 Level
 Mean

 Paste C NC A
 32.505000


 Paste F NC
 B
 25.070000

 Levels not connected by same letter are significantly different.

NC Solder Pastes C & F SAC305 Profile QFN 7

Voiding Results – Custom Stencil Design

Excluded Rows 600

Means Comparisons				
Comparisons for al	I pairs using Tukey-Kramer HSD			
Connecting Lette	rs Report			
Level	Mean			
QFN7 50% A	30.720000			
QFN7 60% A	28.750000			
QFN7 70% B	7.633333			
QFN7 80% B	6.493333			
Levels not connected b	y same letter are significantly different.			

80% area	60% area
20% Reduction	40% Reduction
30% Reduction	50% Reduction

NC Solder Paste F SAC305 Profile QFN 7

Conclusions

What Have We Learned About Voiding?

Factor	Conclusion
Component size	 The 7 mm QFN gave higher voiding than the 10 mm QFN. This was likely affected by the stencil design.
Solder powder size	 Decreasing solder powder size gave lower voiding for Paste B (WS) but not Pastes C or F (NC)
Solder paste	 Water soluble lead free pastes tend to give higher voiding than no clean lead free pastes. New "low voiding" solder pastes can help to reduce the potential for voiding.
Solder alloy	• As the melting range of the solder alloy widens then the voiding tends to decrease.
Surface finish	 OSP surface finish gave higher voiding than ENIG with a no clean paste. Two water soluble pastes showed similar voiding with OSP and ENIG.
Stencil design	 Increasing the printed paste area tends to reduce voiding on QFN thermal pads.

How to Fill the Void

- Decreasing the solder powder size can reduce voiding with certain solder pastes.
- ✓ Specific solder alloys may help mitigate voiding.
- Use a solder paste that works well with the surface finish to minimize voiding.
- "Low voiding" solder pastes can be used to reduce the overall potential for voiding.
- Optimize the stencil design for the components to allow for complete wetting and gas escape routes.

Future Work

Voiding is prevalent for via-hole in pad designs. Mitigation methods are being tested including:

Via hole plugging options

 No plug – open via hole
 Solder mask tent
 Complete via fill

 Stencils designs

 Print around holes
 Gas escape routes

Acknowledgements

I would like to thank Greg Smith (Blue Ring Stencils) for his help designing the stencils used in this work.

I also appreciate the efforts of Andrea Motley, a summer intern, who performed much of the testing.

Tony Lentz tlentz@fctassembly.com 970-346-8002