

FILL THE VOID IV: ELIMINATION OF INTER-VIA VOIDING

Tony Lentz FCT Assembly tlentz@fctassembly.com

OUTLINE

- Introduction
- Factors that Influence Voiding
- Methodology
- Voiding Results
- Recommendations to Fill the Void
- Future Work
- Acknowledgements
- Thank You & Questions

INTRODUCTION

INTRODUCTION ON VOIDING

Voiding is Common for QFN Thermal Pads with Via Holes

FACTORS THAT INFLUENCE VOIDING FOR VIA-IN-PAD DESIGNS

SUCCEED VELOCITY

TECHNOLOGY

AT THE

Via Hole Plugging Options: Open, S/M Tent, Plugged

FACTORS THAT INFLUENCE VOIDING FOR VIA-IN-PAD DESIGNS

SUCCEED VELDEITY

TECHNOLOGY

AT THE

METHODOLOGY

METHODOLOGY – CIRCUIT BOARDS

SUCCEED VELOCITY AT THE

TECHNOLOGY

PR Test Board with Via in Pad (0.3 mm = 12 mil vias), Plated with ENIG

METHODOLOGY – CIRCUIT BOARDS

SUCCEED VELOCITY AT THE

OF

TECHNOLOGY

PR Test Board with a Solder Mask Tent on the Bottom Side

METHODOLOGY – CIRCUIT BOARDS

SUCCEED VELOCITY AT THE

TECHNOLOGY

PR Test Board with Non-Conductive Via Fill, Plated with Cu and ENIG

METHODOLOGY – QFN COMPONENTS

SUCCEED VELOCITY AT THE

TECHNOLOGY

QFN Components: 10 mm body (68 lead) and 7 mm body (48 lead). Matte Tin Finish

METHODOLOGY – STANDARD STENCIL

SUCCEED VELOCITY

TECHNOLOGY

AT THE

Standard Solder Paste Print: 65% Area Window Pane. Printed Over Via Holes

METHODOLOGY – MODIFIED STENCIL

SUCCEED VELDEITY

TECHNOLOGY

AT THE

Modified Solder Paste Print: 63% Area Grid. Printed Around Via Holes

METHODOLOGY – SOLDER PASTE AND REFLOW

SUCCEED VELOCITY AT THE

TECHNOLOGY

No Clean SAC305 Type 3 Solder Paste

Setting	RTS Profile
Ramp rate	1.7 – 1.8 °C/sec
Reflow Time (> 220 °C)	61 - 67 sec
Peak temperature	241 to 248 °C
Profile length (25 °C to peak)	4.70 minutes

METHODOLOGY – EXPERIMENTAL PROCEDURE

10 Circuit Boards For Each Variation

SUCCEED

AT THE

- 4 of Each QFN Size Placed and Boards were Reflowed
- Void Area and Largest Size Measured on Each QFN
- Images were Taken of Representative QFN Voiding
- Data was Analyzed and Statistics Generated

ELOCITY

VOIDING RESULTS

VOIDING RESULTS – VIA FILL OPTIONS, STANDARD STENCIL

SUCCEED

AT THE

ELOCITY

ECHAOLOGY

	Open Vias	Solder Mask Tent	Complete Plug	Flat Thermal Pad
	(No Fill)			(No Via)
QFN7				
QFN10			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

3D Voiding Images: Open Vias = Lower Voiding, Plugged and No Vias = More Voiding

VOIDING RESULTS – VIA FILL OPTIONS, MODIFIED STENCIL

SUCCEED

AT THE

ELOCITY

	Open Vias (No Fill)	Solder Mask Tent	Complete Plug
QFN7			
QFN10			

3D Voiding Images: Open Vias = Lower Voiding, Plugged Vias = More Voiding

VOIDING SIZE – BY STENCIL

TECHNOLOGY

SUCCEED VELDEITY

Excluded Rows 400

Means Comparisons

AT THE

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Level		Mean	
PR Plug	A	3.8162500	
PR	В	2.5537500	
PR Tent	С	0.5500000	
PR Via	С	0.4762500	
Levels no	t connected	l by same letter a	are significantly different.

STANDARD STENCIL

Excluded Rows 480

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Level		Mean	
PR Plug A	۸	3.4425000	
PR Tent	в	0.6375000	
PR Via	в	0.5575000	
Levels not	conne	ected by same letter a	re significantly different.

MODIFIED STENCIL

PR = Flat Pad (No Vias) PR Plug = Plugged Vias PR Tent = S/M Tented Vias PR Via = Open Vias

SOLDER FLOW TO THE BOTTOM OF THE BOARD

STANDARD STENCIL

SUCCEED VELOCITY AT THE

TECHNOLOGY

MODIFIED STENCIL

VOIDING SIZE BY STENCIL DESIGN FOR EACH VIA TYPE

SUCCEED VELOCITY AT THE

TECHNOLOGY

Level		Mean	
PRV	А	0.55750000	
CH65	А	0.47625000	
Levels	not	connected by same letter	are significantly different.

Compariso	ns for all pairs using Tukey-Kramer HSD
Connecti	ng Letters Report
Level	Mean
Level PRV A	Mean 0.63750000

ompariso	ns for all pairs using Tukey-Kramer HSD
Connecti	ng Letters Report
Level	Mean
CH65 A	3.8162500
PRV A	3.4425000

Levels not connected by same letter are significantly different.

TENTED VIAS

PLUGGED VIAS

VOIDING BY QFN SIZE

SUCCEED VELOCITY

TECHNOLOGY

Excluded Rows 160

Means Comparisons

AT THE

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

 Level
 Mean

 QFN7
 A
 2.2310714

 QFN10
 B
 1.2071429

 Levels not connected by same letter are significantly different.

LARGEST VOID SIZE

Excluded Rows 640

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

 Level
 Mean

 QFN7
 A
 10.130000

 QFN10
 B
 7.995000

 Levels not connected by same letter are significantly different.

VOID AREA

Standard Stencil (65%) Flat QFN Pads – No Vias QFN10 Mass = 2x QFN7

FILL THE VOID

RECOMMENDATIONS TO FILL THE VOID

- Void size can be reduced using via holes in QFN thermal pads.
- Modifications to the stencil design limits the amount of solder flow through the via holes.
- Use of larger QFN's may reduce overall voiding.

SUCCEED

AT THE

ELOCITY

Via holes in QFN thermal pads certainly influence voiding!

FUTURE WORK

Work on mitigation strategies to reduce voiding is ongoing. Data will be presented at future technical conferences.

ACKNOWLEDGEMENTS

Greg Smith with BlueRing Stencils designed and supplied the stencils used in this work.

