

AN INVESTIGATION INTO THE DURABILITY OF STENCIL COATING TECHNOLOGIES

Greg Smith and Tony Lentz FCT Assembly, Inc. Greeley, CO, USA

This paper and presentation was first presented at the 2017 IPC Apex Expo Technical Conference and published in the 2017 Technical Conference Proceedings.

Outline

Introduction

Methodology

- Chemical Damage to Nano-Coatings
- Mechanical Damage to Nano-Coatings

Results and Discussion

- Wet Chemical Scrub Testing Data
- Chemical Attack Testing
- Mechanical Damage Testing

Recommendations to Extend the Life of Nano-Coatings

Conclusions

Introduction

Phosphonate Coating

Nano coatings are used to improve the print process. The ongoing question is, "How long do they last?"

Description of Nano Coating Types

TECHNOLOGY'S

POINT

URNING

TURN ELECTRONICS MANUFACTURING INSPIRATION INTO INNOVATION

Properties of FPN and Phosphonate Nano-Coatings

Attributes	Fluoro-Polymer Coating	Phosphonate	
Application	Spray and thermal cure	Wipe on	
Thickness	2-4 microns	2-4 nm	
Visible on stencil?	Yes	No	
Hydro and oleophobic	\checkmark	\checkmark	
Reduces frequency of underside cleaning	\checkmark	\checkmark	
Abrasion resistant	\checkmark	Wears off	
Chemical resistant	\checkmark	Wears off	
Re-coating possible?	No	~	
Solder paste volume	15 – 25% increase in TE	Slight decrease < 5%	
Minimum Area Ratio	0.10 lower than foil	Same as foil	

Three coatings tested

- FPN
- Phos-1 and Phos-2

Chemical Damage to Nano-Coatings

ASTM D2486 Wet Scrub Tester

- 2000 scrub cycles
- Dry and wet chemical scrub

Measured contact angle change

Chemical Damage to Nano-Coatings

Hydrophobic Surface		Hydrophilic Surface
High	Contact Angle	Low
Poor	Adhesiveness	Good
Poor	Wettability	Good
Low	Surface Free Energy	High

Chemical Damage to Nano-Coatings

Immersion 48 hours at Room Temp

• 192 cleaning cycles

Rinsed and dried Evaluated for DI water spread

Mechanical Damage to Nano-Coatings

Mechanical Damage to Nano-Coatings Retired Stencil with > 10,000 Print Cycles

Mechanical Damage to Nano-Coatings Methodology

Mechanical Damage to Nano-Coatings Methodology

	Underside Wipe Test	Squeegee Print Test	50 Cycle Print Test	
Coating	PHOS-2 and FPN	FPN	Hybrid(FPN/PHOS-2)	
Variable Tested	1000 Dry Wipe Cycles	1000 Dry Squeegee Cycles	50 Print Cycles	
Solder Paste	None	None	No Clean, SAC 305, Type 4	
Squeegee Length	300 mm	300 mm	300 mm	
Squeegee Wipe Material	Mid-Grade Stencil Wipe Material	No Underside Wipe	No Underside Wipe	
Squeegee Pressure	1 Kg	12 Kg	12 Kg	
Squeegee Speed	50 mm/sec	50 mm/sec	50 mm/sec	

Mechanical Damage to Nano-Coatings Underside Wipe Test

Mechanical Damage to Nano-Coatings Squeegee Print Test

2 Oz. Cu, HASL Test Vehicle

Mechanical Damage to Nano-Coatings 50 Cycle Print Test-Hybrid Technology

2 Oz. Cu, HASL Test Vehicle

Chemical Damage to Nano-Coatings Scrub Test Results

Contact angle decrease indicates loss of hydrophobicity

Chemical Damage to Nano-Coatings Scrub Test Results

Contact angle decrease indicates loss of hydrophobicity

TECHNOLOGY'S

TURNING

POINT

TURN ELECTRONICS MANUFACTURING INSPIRATION INTO INNOVATION

Chemical Damage to Nano-Coatings Chemical Immersion Test Results

Chemicals	Chemical Type	Phos-1	Phos-2	FPN
Isopropyl alcohol	Solvent	Damaged		
n-butyl alcohol	Solvent	Damaged		
Hexylene glycol	Solvent			
Propylene glycol	Solvent			
Dipropylene glycol	Solvent	Damaged	Damaged	
Dimethyl esters (Dibasic ester)	Solvent	Damaged		
Ethylene glycol monobutyl ether	Solvent	Damaged		
Diethylene glycol monobutyl ether	Solvent	Damaged		
Triethylene glycol monobutyl ether	Solvent	Damaged		
Diethylene glycol monohexyl ether	Solvent	Damaged	Damaged	
Propylene glycol methyl ether (1-methoxy-2-propanol)	Solvent			
Tripropylene glycol n-butyl ether	Solvent			
D-Limonene (orange oil)	Solvent	Stripped	Stripped	
Non-ionic block copolymer surfactant 50 g/L	Surfactant			
Octylphenol ethoxylate surfactant 50 g/L	Surfactant			
Monoethanolamine (100 g/L pH 11.60)	Mild base			
Potassium carbonate (100 g/L pH 11.50)	Mild base			
Tetrapotassium pyrophosphate (100 g/L pH 10.40)	Mild base	Damaged		

Damaged indicates loss of hydrophobicity

Stripped indicates complete removal

Mechanical Damage Testing Underside Wipe Test Results

Mechanical Damage Testing Underside Wipe Test Results

10 Prints, No Under Side Wipe

Mechanical Damage Testing Underside Wipe Test Results

20 Prints, No Under Side Wipe

Mechanical Damage Testing Underside Wipe Test Results

Mechanical Wear after 1000 Underside Wipes

Mechanical Damage Testing Squeegee Print Test Results

Mechanical Damage Testing Squeegee Print Test Results

Mechanical Damage after 1000 Dry Squeegee Prints

Mechanical Damage Testing Squeegee Print Test Results

Mechanical Damage in Aperture Wall

Mechanical Damage Testing

Mechanical Damage Testing 50 Cycle Print Test-Hybrid Results

R & D Hybrid Stencil

Mechanical Damage Testing 50 Cycle Print Test-Hybrid Results

R & D Hybrid Stencil

Conclusions

- ✓ Nano-coatings provide printing benefits, but these benefits only last as long as the coating is functional
- Mechanical and Chemical damage occur to the nano-coatings during use
- ✓ Nano-coatings are nano-meters to microns thick and will not last forever
- ✓ Nano-coating life can be extended

Guidelines to Extend the Life of Nano-Coatings

- 1. Use solder pastes and stencil cleaners that are chemically compatible with the nano-coating
- 2. Reduce the frequency of underside cleaning to minimize abrasive and chemical damage
- 3. Minimize squeegee pressure and use proper board support to minimize mechanical damage
- 4. Use nano-coatings that are more resistant to damage
- 5. Re-coat phosphonate based nano-coatings as needed to maintain functionality