

Water Soluble Solder Paste Wet Behind the Ears or Wave of the Future?

Tony Lentz FCT Assembly Greeley, CO, USA <u>tlentz@fctassembly.com</u>

Why Develop a New Lead-Free Water Soluble Solder Paste?

- Water soluble solder paste technology has fallen behind no clean technology
- High reliability applications require removal of flux
- Water soluble flux residues are much easier to remove than no cleans

Is a New Solder Paste Wet Behind the Ears?

Performance Testing Incubates the Product

Process of Formulating a New Solder Paste

- 1. Set performance objectives.
- 2. Develop multiple formulations.
- 3. Produce small batches of formulations.
- 4. Conduct testing to measure the performance.
- 5. Compare the results to well-known products.
- 6. Repeat steps 2 5 until the objectives are met.

Ingredients Used in Solder Paste Fluxes

Ingredient Type	Function
Solvents	Dissolve other ingredients to make a uniform mixture
Rosins / resins	Add "body" and some activity
Activators	Oxide removal and promotes soldering
Surfactants	Aids in wetting and cleaning of flux residues
Rheology modifiers	Enables solder paste to be printed
Others (Trade Secrets)	"Gray Magic"

Performance Attributes of a New Lead-Free Water Soluble Solder Paste

Environmentally stable in a range of operating conditions

Flux residues that are easy to wash

Long stencil life Excellent print characteristics

0000

00000

0000

Nominal wetting

Test Methods to Challenge Solder Paste

Environmental Stability

- Mass change with air exposure in high and low humidity
- Tack force change with air exposure and humidity
- 6-hour mix with air exposure

Print Tests

- Stencil life 8-hour print test with response to pause
- Print speed variation: 20, 50, 100 mm/sec

Reflow Tests

- Wetting / spread on ENIG and OSP
- Solder balling and graping

Washability

- Circuit board appearance after wash
- Water solubility of flux residues

Three Solder Pastes (SAC305 Type 3):

Solder Paste A Solder Paste B New Solder Paste

Environmental Stability – Mass Change

Mass change < 0.10% indicates good stability

Environmental Stability – Tack Force

Ideal solder pastes show little change in tack force.

Environmental Stability – 6 Hour Mix

Solder Paste	Viscosity Initial (Brookfield, Kcps)	Viscosity Final (Brookfield, Kcps)	Viscosity Change (%)	
Solder Paste A	630	680	7.9% increase	
New Solder Paste	760	690	9.2% decrease	

Viscosity decrease of less than 10% indicates good stability.

APEX EXPO PC 2016

Stencil Life and Response to Pause

Print Characteristics – Speed Variation

Ideal solder pastes give similar TE% at all print speeds.

Print Characteristics - Brick Definition (50 mm/sec print speed)

New Solder Paste

Solder Paste B

Test Board and Linear Reflow Profile

Profile Length (45 °C to Peak Temperature)	4.0 to 4.5 minutes
Ramp Rate	1.0 to 1.5 °C/second
Time Above Liquidus (217 °C)	50 to 70 seconds (60 seconds nominal)
Peak Temperature	240 to 250 °C (245 °C nominal)

Printed Solder Paste on Wetting Pattern

15 bricks on each line Pitch 0.1 to 0.4 mm

Wetting Test Pattern

Poor Wetting on OSP (7%) Good Wetting on OSP (36%)

Wetting on ENIG and OSP

biological and the state of the

Solder Balling and Graping Patterns

Solder Balling and Graping

Test	Solder Paste A	Solder Paste B	New SP	Best Possible Result / Goal
Graping (%)	aping (%) 42%		17%	0%
Solder Balling	900%	1250%	1250%	1250%
(<10 balls)	overprint	overprint	overprint	
Solder Balling	750%	1100%	1250%	1250%
(<5 balls)	overprint	overprint	overprint	

Water Washability

Paste B and the New Paste are Water Soluble

Summary of Results

Test Method / Property	Solder Paste A	Solder Paste B	New Solder Paste
Environmental stability: Low relative humidity	0	0	0
Environmental stability: High relative humidity	+	-	0
Tack force change over 72-hours	+	0	-
Tack force change over 8-hours	0	-	+
Reactivity testing: 6-hour mix	0	Not determined	+
Stencil life: 8-hour print test	+	-	0
Print speed variation: 20, 50, 100 mm/sec	+	-	0
Wetting on ENIG	+	+	+
Wetting on OSP	0	-	+
Solder balling	-	0	+
Graping	-	+	0
Water washability: circuit board cleanliness	0	-	0
Water washability: solubility in water	-	0	0
Sum of Rankings (+ and -)	5 (+) 3 (-)	2 (+) 6 (-)	5 (+) 1 (-)
NET RANK	2 (+)	4 (-)	4 (+)

Conclusions

- The development process created a new high performance lead-free water soluble solder paste.
- The new solder paste exceeds the overall performance of two solder pastes used in the market for many years.
- The test methods used to evaluate solder paste performance are rigorous and evaluate key characteristics that are desirable in solder pastes.
- The new solder paste may be "wet behind the ears" but promises to become the "wave of the future".

Acknowledgments

 The author would like to thank the R&D Team at FCT Assembly for their work running tests and gathering data for this paper.

Questions?

Click or call us today and set-up an evaluation with one of our Field Application Engineers

970-346-8002

Contact us today and request samples of our SMT solders, stencils and coatings

support@fctassembly.com

_	-	-	_	
		_	_	
	_		_	
_	-		_	
	_		_	
_		-	_	
		_	_	

Visit our website today and download FREE technical papers and presentations

www.fctassembly.com